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SOME GROWTH ASPECTS OF COMPOSITE P-ADIC

ENTIRE FUNCTIONS IN THE LIGHT OF THEIR

(p, q)-TH RELATIVE ORDER AND (p, q)-TH RELATIVE

TYPE

Tanmay Biswas*

Abstract. Let us consider that K be a complete ultrametric alge-
braically closed field and A (K) be the K-algebra of entire functions
on K. In this paper we introduce the notions of (p, q)-th relative
order and (p, q)-th relative type of p adic entire functions where p
and q are any two positive integers and then study some growth
properties of composite p adic entire functions in the light of their
(p, q)-th relative order and (p, q)-th relative type. After that we
show that (p, q) th relative order and (p, q)-th relative type are re-
main unchanged for derivatives under some certain conditions.

1. Introduction and Definitions

Let us consider K be an algebraically closed field of characteristic 0,
complete with respect to a p-adic absolute value |·| (example Cp) . For
any α ∈ K and R ∈]0,+∞[, the closed disk {x ∈ K : |x−α| ≤ R} and the
open disk {x ∈ K : |x − α| < R} are denoted by d (α,R) and d (α,R−)
respectively. Also C(α, r) denotes the circle {x ∈ K : |x − α| = r}.
Moreover A (K) represent the K-algebra of analytic functions in K i.e.
the set of power series with an infinite radius of convergence. For the
most comprehensive study of analytic functions inside a disk or in the
whole field K, we refer the reader to the books [18, 23]. During the
last several years the ideas of p-adic analysis have been studied from
different aspects and many important results were gained (see [2] to [8],
[11, 14, 15, 16, 17, 22]). We do not explain the standard definitions
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and notations in the theory of p-adic analysis as those are available
in [12, 13]. Let f ∈ A (K) and r > 0, then we denote by |f | (r) the
number sup {|f (x) |||x| = r} where |·| (r) is a multiplicative norm on

A (K) . For x ∈ [0,∞) and k ∈ N, we define log[k] x = log
(

log[k−1] x
)

and exp[k] x = exp
(
exp[k−1] x

)
where N be the set of all positive integers.

We also denote log[0] x = x and exp[0] x = x. Throughout the paper, log
denotes the Neperian logarithm. Taking this into account the order
(resp. lower order) of an entire function f ∈ A (K) is given by (see [5])

ρ (f)
λ (f)

= lim
r→+∞

sup
inf

log[2] |f | (r)
log r

.

The above definition of order (resp. lower order) does not seem to
be feasible if an entire function f ∈ A (K) is of order zero. To over
come this situation and in order to study the growth of f precisely,
one may introduce the concept of logarithmic order (resp. logarithmic
lower order) by increasing log+ once in the denominator following the
classical definition of logarithmic order (see for example [10]). Therefore
the logarithmic order ρlog (f) and logarithmic lower order λlog (f) of an
entire function f ∈ A (K) are define as

ρlog (f)
λlog (f)

= lim
r→+∞

sup
inf

log[2] |f | (r)
log[2] r

.

Further one may introduce the following alternative definition of zero
order (resp. zero lower order) of an entire function f ∈ A (K) when
ρ (f) = 0(resp. λ (f) = 0)) in the following way:

Definition 1.1. Let f ∈ A (K) be such that ρ (f) = 0. Then the
quantitiesρ (f) and λ (f) of f are defined by:

ρ (f)
λ (f)

= lim
r→+∞

sup
inf

log |f | (r)
log r

,

and in this case one can easily verify that ρlog (f) = 1 and λlog (f) = 1.

Boussaf et al. [5] also introduce the definition of type (resp. lower
type) of an entire function f ∈ A (K) which is also another type of
growth indicator used for comparing the relative growth of two entire
functions defined in A (K) having same non zero finite order in the fol-
lowing way:

σ (f)
σ (f)

= lim
r→+∞

sup
inf

log |f | (r)
rρ(f)

where 0 < ρ (f) <∞.
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Analogously for 0 < λ (f) < ∞, one may give the definition of weak
type τ (f) and the growth indicator τ (f) of an entire function f ∈ A (K)
in the following way:

τ (f)
τ (f)

= lim
r→+∞

sup
inf

log |f | (r)
rλ(f)

.

Moreover the concept of (p, q)-th order (p and q are any two positive
integers with p ≥ q) is not new and was first introduced by Juneja et al.
[19, 20]. In the line of Juneja et al. [19, 20], now we shall introduce the
definitions of (p, q)-th order and (p, q)-th lower order respectively of an
entire function f ∈ A (K) where p, q ∈ N. In order to keep accordance
with the definition of logarithmic order we will give a minor modification
to the original definition of (p, q)-order introduced by Juneja et al. [19,
20].

Definition 1.2. Let f ∈ A (K) and p, q ∈ N. Then the (p, q)-th order
and (p, q)-th lower order of f are respectively define as:

ρ(p,q) (f)

λ(p,q) (f)
= lim

r→+∞
sup
inf

log[p] |f | (r)
log[q] r

.

These definitions extended the generalized order ρ[l] (f) and gener-

alized lower order λ[l] (f) of f ∈ A (K) for each integer l ≥ 2 since

these correspond to the particular case ρ[l] (f) = ρ(l,1) (f) and λ[l] (f) =

λ(l,1) (f) . Clearly ρ(2,1) (f) = ρ (f) and λ(2,1) (f) = λ (f) . The above
definition avoids the restriction p > q and gives the idea of generalized
logarithmic order.

In this connection we just introduce the following definition which is
analogous to a definition of Juneja et al. [19, 20]:

Definition 1.3. An entire function f ∈ A (K) is said to have index-

pair (p, q) where p and q ∈ N if b < ρ(p,q) (f) < ∞ and ρ(p−1,q−1) (f)
is not a nonzero finite number, where b = 1 if p = q and b = 0 for
otherwise. Moreover if 0 < ρ(p,q) (f) <∞, then

ρ(p−n,q) (f) =∞ for n < p,

ρ(p,q−n) (f) = 0 for n < q,

ρ(p+n,q+n) (f) = 1 for n = 1, 2, · · · .

Similarly for 0 < λ(p,q) (f) <∞, one can easily verify that
λ(p−n,q) (f) =∞ for n < p,

λ(p,q−n) (f) = 0 for n < q,

λ(p+n,q+n) (f) = 1 for n = 1, 2, · · · .
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An entire function f ∈ A (K) of index-pair (p, q) is said to be of
regular (p, q) th growth if its (p, q) th order coincides with its (p, q) th
lower order, otherwise f is said to be of irregular (p, q) th growth.

Next, to compare the growth of entire functions on K having the same
(p, q)-th order, we give the definitions of (p, q)-th type and (p, q)-th lower
type in the following manner:

Definition 1.4. The (p, q)-th type and the (p, q)-th lower type of

entire function f ∈ A (K) having finite positive (p, q)-th order ρ(p,q) (f)

(b < ρ(p,q) (f) < ∞) are defined as:

σ(p,q) (f)

σ(p,q) (f)
= lim

r→+∞
sup
inf

log[p−1] |f | (r)(
log[q−1] r

)ρ(p,q)(f) ,
where p, q are any two positive integers, b = 1 if p = q and b = 0 for
p > q. It is obvious that 0 ≤ σ(p,q) (f) ≤ σ(p,q) (f) ≤ ∞ .

Likewise, to compare the growth of entire functions on K having the
same (p, q)-th lower order, one can also introduced the concepts of (p, q)-
th weak type in the following manner:

Definition 1.5. The (p, q) th weak type of entire function f ∈ A (K)

having finite positive (p, q) th tower order λ(p,q) (f) (b < λ(p,q) (f) < ∞)
is defined as :

τ (p,q) (f) = lim
r→+∞

log[p−1] |f | (r)(
log[q−1] r

)λ(p,q)(f)
where p, q are any two positive integers, b = 1 if p = q and b = 0 for
p > q .

Similarly one may define the growth indicator τ (p,q) (f) of an entire
function f ∈ A (K) in the following way :

τ (p,q) (f) = lim
r→+∞

log[p−1] |f | (r)(
log[q−1] r

)λ(p,q)(f) , b < λ(p,q) (f) <∞

where p, q are any two positive integers, b = 1 if p = q and b = 0 for
p > q. It is obvious that 0 ≤ τ (p,q) (f) ≤ τ (p,q) (f) ≤ ∞ .

However the concept of relative order in the complex context and as
well as their technical advantages of not comparing with the growths
of exp z was first introduced by Bernal [1]. In order to make some
progress in the study of p-adic analysis, recently Biswas [9] introduce
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the definition of relative order and relative lower order of entire function
f ∈ A (K) with respect to another entire function g ∈ A (K) in the
following way:

ρg (f)
λg (f)

= lim
r→+∞

sup
inf

log |̂g| (|f | (r))
log r

.

Further the function f ∈ A (K) , for which relative order and relative
lower order with respect to another function g ∈ A (K) are the same is
called a function of regular relative growth with respect to g. Otherwise,
f is said to be irregular relative growth.with respect to g.

In the case of relative order, it therefore seems reasonable to define
suitably the (p, q)-th relative order as well as (p, q)-th relative type of
entire function belonging to A (K) and to investigate some of its basic
properties, which we attempt in this paper. With this in view we in-

troduce the following definitions of (p, q)-th relative order ρ
(p,q)
g (f) and

(p, q)-th relative lower order λ
(p,q)
g (f) of an entire function f ∈ A (K)

with respect to another entire function g ∈ A (K), in the light of index-
pair. Our next definition avoids the restriction p > q.

Definition 1.6. Let f, g ∈ A (K). Also let the index-pair of f and
g are (m, q) and (m, p) , respectively, where p, q,m are positive integers.

Then the (p, q)-th relative order ρ
(p,q)
g (f) and (p, q)-th relative lower

order λ
(p,q)
g (f) of f with respect to g are defined as

ρ
(p,q)
g (f)

λ
(p,q)
g (f)

= lim
r→+∞

sup
inf

log[p] |̂g| (|f | (r))
log[q] r

= lim
r→+∞

sup
inf

log[p] |̂g| (r)
log[q] |̂f | (r)

.

Further for any f ∈ A (K) for which (p, q)-th relative order and (p, q)-
th relative lower order with respect to g ∈ A (K) are the same is called
a function of regular relative (p, q) growth with respect to g. Otherwise,
f is said to be irregular relative (p, q) growth with respect to g.

In the case of relative order, one may also introduce the definition of
relative index-pair in the following manner:

Definition 1.7. An entire function f ∈ A (K) is said to have relative
index-pair (p, q) with respect to another entire function g ∈ A (K) where

p and q ∈ N if b < ρ
(p,q)
g (f) < ∞ and ρ

(p−1,q−1)
g (f) is not a nonzero

finite number, where b = 1 if p = q and b = 0 for otherwise. Moreover if
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0 < ρ
(p,q)
g (f) <∞, then

ρ
(p−n,q)
g (f) =∞ for n < p,

ρ
(p,q−n)
g (f) = 0 for n < q,

ρ
(p+n,q+n)
g (f) = 1 for n = 1, 2, · · · .

Similarly for 0 < λ
(p,q)
g (f) <∞, one can easily verify that

λ
(p−n,q)
g (f) =∞ for n < p,

λ
(p,q−n)
g (f) = 0 for n < q,

λ
(p+n,q+n)
g (f) = 1 for n = 1, 2, · · · .

Now in order to refine the above growth scale, we introduce the def-
initions of another growth indicators, called (p, q) -th relative type and
(p, q) -th relative lower type respectively of p adic entire function with
respect to another p adic entire function in the light of their index-pair
which is as follows:

Definition 1.8. Let f, g ∈ A (K). Also let the index-pair of f and
g are (m, q) and (m, p) , respectively, where p, q,m are positive inte-
gers. The (p, q) -th relative type and (p, q) -th relative lower type of f

with respect to g having finite positive (p, q)-th relative order ρ
(p,q)
g (f)(

a < ρ
(p,q)
g (f) <∞

)
are defined as :

σ
(p,q)
g (f)

σ
(p,q)
g (f)

= lim
r→+∞

sup
inf

log[p−1] |̂g| (|f | (r))(
log[q−1] r

)ρ(p,q)g (f)
,

where p, q are any two positive integers, b = 1 if p = q and b = 0 for

p > q. It is obvious that 0 ≤ σ(p,q)g (f) ≤ σ(p,q)g (f) ≤ ∞ .

Analogously, to determine the relative growth of two entire functions
on K and having same non zero finite (p, q)-th relative lower order with
respect to another entire function belonging toA (K), one can introduced
the definition of (p, q) -th relative weak type of an entire function f ∈
A (K) with respect to g ∈ A (K) of finite positive (p, q) -th relative lower

order λ
(p,q)
g (f) in the following way:

Definition 1.9. Let f, g ∈ A (K). Also let the index-pair of f and
g are (m, q) and (m, p) , respectively, where p, q,m are positive integers.

The (p, q) -th relative weak type and the growth indicator τ
(p,q)
g (f) of
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f with respect to g having finite positive (p, q)-th relative lower order

λ
(p,q)
g (f)

(
a < λ

(p,q)
g (f) <∞

)
are defined as :

τ
(p,q)
g (f)

τ
(p,q)
g (f)

= lim
r→+∞

sup
inf

log[p−1] |̂g| (|f | (r))(
log[q−1] r

)λ(p,q)g (f)
,

where p, q are any two positive integers, b = 1 if p = q and b = 0 for

p > q. It is obvious that 0 ≤ τ (p,q)g (f) ≤ τ (p,q)g (f) ≤ ∞ .

For any two entire functions f ∈ A (K) and g ∈ A (K) the ratio |f |(r)|g|(r)
as r → +∞ is called the growth of f with respect to g in terms of their
multiplicative norm. Actually the studies of the growths of composite p
adic entire functions in the light of their relative growth indicators are
the prime concern of this paper. After discussing some growth properties
of composite p adic entire functions in the light of their (p, q)-th relative
order and (p, q)-th relative type, we show that (p, q) th relative order
and (p, q)-th relative type are remain unchanged for derivatives under
some certain conditions.

2. Lemmas

In this section we present some lemmas which will be needed in the
sequel.

The following lemma due to A. Escassut [12] which can also be found
in [5] or [8].

Lemma 2.1. Let f, g ∈ A (K) . Then for all sufficiently large values
of r

|f ◦ g| (r) = |f | (|g| (r)) .

Lemma 2.2. Let f (x) =
+∞∑
n=0

anx
n ∈ A (K) and let a, b be positive

with a < b and b > 1. Then when r is large enough, one has

ra|f | (r) ≤ |f |
(
rb
)
.

Proof. Since f (x) =
+∞∑
n=0

anx
n ∈ A (K) . Then for all r > 0 we have

|f | (r) = sup
n≥0
{|an|rn} .
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Now

(2.1) |f |
(
rb
)

= sup
n≥0

{
|an| (r)bn

}
.

Also

ra|f | (r) = rasup
n≥0
{|an|rn} ,

i.e., ra|f | (r) = sup
n≥0

{
|an| (r)a+n

}
.(2.2)

As we take the supremum value for large r, therefore n 6= 0 and as
a < b so a + n ≤ bn holds. Hence from (2.1) and (2.2) we get that
ra|f | (r) ≤ |f |

(
rb
)
.

Thus the lemma follows.

3. Main Results

In this section we present the main results of the paper.

Theorem 3.1. Let f , g, h ∈ A (K). Also let the relative index pair
of f with respect to h and the index pair of g are (p, q) and (m,n)
respectively where p, q,m, n ∈ N. Then

(i) the relative index-pair of f ◦ g is (p, n) when q = m and either

λ
(p,q)
h (f) > 0 or λ(m,n) (g) > 0. Also

(a) λ
(p,q)
h (f)ρ(m,n) (g) ≤ ρ(p,n)h (f ◦ g) ρ

(p,q)
h (f) ρ(m,n) (g) if λ

(p,q)
h (f)

> 0 and
(b) ρ

(p,q)
h (f)λ(m,n) (g) ≤ ρ(p,n)h (f ◦ g) ρ

(p,q)
h (f) ρ(m,n) (g) if λ(m,n) (g)

> 0;
(ii) the relative index-pair of f ◦ g is (p, q + n−m) when q > m and

either λ
(p,q)
h (f) > 0 or λ(m,n) (g) > 0. Also

(a) λ
(p,q)
h (f) ≤ ρ(p,q+n−m)

h (f ◦ g) ρ
(p,q)
h (f) if λ

(p,q)
h (f) > 0 and

(b) ρ
(p,q+n−m)
h (f ◦ g) = ρ

(p,q)
h (f) if λ(m,n) (g) > 0;

(iii) the relative index-pair of f ◦ g is (p + m − q, n) when q < m and

either λ
(p,q)
h (f) > 0 or λ(m,n)(g) > 0. Also

(a) ρ
(p+m−q,n)
h (f ◦ g) = ρ(m,n) (g) if λ

(p,q)
h (f) > 0 and

(b) λ(m,n) (g) ≤ ρ(p+m−q,n)h (f ◦ g) ρ(m,n) (g) if λ(m,n) (g) > 0.

Proof. In view of Lemma 2.1, it follows for all sufficiently large posi-
tive numbers of r that

(3.1) log[p] |̂h| (|f ◦ g| (r)) ≥
(
λ
(p,q)
h (f)− ε

)
log[q] |g| (r)
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and also for a sequence of positive numbers of r tending to infinity we
get that

(3.2) log[p] |̂h| (|f ◦ g| (r)) ≥
(
ρ
(p,q)
h (f)− ε

)
log[q] |g| (r) .

Similarly, we have for all sufficiently large positive numbers of r that

(3.3) log[p] |̂h| (|f ◦ g| (r))
(
ρ
(p,q)
h (f) + ε

)
log[q] |g| (r) .

Now the following three cases may arise:
Case I. Let q = m. In this case we have from (3.3) for all sufficiently
large positive numbers of r that

log[p] |̂h| (|f ◦ g| (r))
(
ρ
(p,q)
h (f) + ε

)(
ρ(m,n) (g) + ε

)
log[n] r,

(3.4) i.e., lim
r→+∞

log[p] |̂h| (|f ◦ g| (r))
log[n] r

ρ
(p,q)
h (f) ρ(m,n) (g) .

Also from (3.1) , we obtain for a sequence of positive numbers of r tend-
ing to infinity that

log[p] |̂h| (|f ◦ g| (r)) ≥
(
λ
(p,q)
h (f)− ε

)(
ρ(m,n) (g)− ε

)
log[n] r,

(3.5) i.e., lim
r→+∞

log[p] |̂h| (|f ◦ g| (r))
log[n] r

≥ λ(p,q)h (f) ρ(m,n) (g) .

Moreover, we have from (3.2) for a sequence of positive numbers of r
tending to infinity that

log[p] |̂h| (|f ◦ g| (r)) ≥
(
ρ
(p,q)
h (f)− ε

)(
λ(m,n) (g)− ε

)
log[n] r,

(3.6) i.e., lim
r→+∞

log[p] |̂h| (|f ◦ g| (r))
log[n] r

≥ ρ(p,q)h (f)λ(m,n) (g) .

Therefore from (3.4) and (3.5) , we get for λ
(p,q)
h (f) > 0 that

λ
(p,q)
h (f) ρ(m,n) (g) ≤ lim

r→+∞

log[p] |̂h| (|f ◦ g| (r))
log[n] r

ρ
(p,q)
h (f) ρ(m,n) (g) ,

(3.7) i.e., λ
(p,q)
h (f) ρ(m,n) (g) ≤ ρ(p,n)h (f ◦ g) ρ

(p,q)
h (f) ρ(m,n) (g) .

Likewise, from (3.4) and (3.6) we obtain for λ(m,n) (g) > 0 that

ρ
(p,q)
h (f)λ(m,n) (g) ≤ lim

r→+∞

log[p] |̂h| (|f ◦ g| (r))
log[n] r

ρ
(p,q)
h (f) ρ(m,n) (g) ,
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(3.8) i.e., ρ
(p,q)
h (f)λ(m,n) (g) ≤ ρ(p,n)h (f ◦ g) ρ

(p,q)
h (f) ρ(m,n) (g) .

Also from (3.7) and (3.8) one can easily verify that ρ
(p−1,n)
h (f ◦ g) =∞,

ρ
(p,n−1)
h (f ◦ g) = 0 and ρ

(p+1,n+1)
h (f ◦ g) = 1 and therefore we obtain

that the relative index-pair of f ◦ g is (p, n) when q = m and either

λ
(p,q)
h (f) > 0 or λ(m,n) (g) > 0 and thus the first part of the theorem is

established.
Case II. Let q > m. Now we obtain from (3.3) for all sufficiently large
positive numbers of r that

log[p] |̂h| (|f ◦ g|(r)
(
ρ
(p,q)
h (f) + ε

)
log[q−m] log[m], |g| (r) ,

i.e., log[p] |̂h| (|f ◦ g|(r)
(
ρ
(p,q)
h (f) + ε

)
log[q−m]

[(
ρ(m,n) (g) + ε

)
log[n] r

]
,

i.e., log[p] |̂h| (|f ◦ g|(r)
(
ρ
(p,q)
h (f) + ε

)
log[q+n−m] r +O(1),

(3.9) i.e., lim
r→+∞

log[p] |̂h| (|f ◦ g| (r))
log[q+n−m] r

ρ
(p,q)
h (f) .

Also from (3.1) , we have for a sequence of positive numbers of r tending
to infinity that

log[p] |̂h| (|f ◦ g| (r)) ≥
(
λ
(p,q)
h (f)− ε

)
log[q−m]

[(
ρ(m,n) (g)− ε

)
log[n] (r)

]
,

i.e., log[p] |̂h| (|f ◦ g| (r)) ≥
(
λ
(p,q)
h (f)− ε

)
log[q−m+n] r +O(1),

(3.10) i.e., lim
r→+∞

log[p] |̂h| (|f ◦ g| (r))
log[q+n−m] r

≥ λ(p,q)h (f) .

Further, we get from (3.2) for a sequence of positive numbers of r tending
to infinity that

log[p] |̂h| (|f ◦ g| (r)) ≥
(
ρ
(p,q)
h (f)− ε

)
log[q−m]

[(
λ(m,n) (g)− ε

)
log[n] (r)

]
,

i.e., log[p] |̂h| (|f ◦ g| (r)) ≥
(
ρ
(p,q)
h (f)− ε

)
log[q+n−m] r +O(1),

(3.11) i.e., lim
r→+∞

log[p] |̂h| (|f ◦ g| (r))
log[q+n−m] r

≥ ρ(p,q)h (f) .
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Therefore from (3.9) and (3.10) , we get for λ
(p,q)
h (f) > 0 that

λ
(p,q)
h (f) ≤ lim

r→+∞

log[p] |̂h| (|f ◦ g| (r))
log[q+n−m] r

ρ
(p,q)
h (f) ,

i.e., λ
(p,q)
h (f) ≤ ρ

(p,q+n−m)
h (f ◦ g) ρ

(p,q)
h (f) .(3.12)

Likewise, from (3.9) and (3.11) we get for λ(m,n) (g) > 0 that

ρ
(p,q)
h (f) ≤ lim

r→+∞

log[p] |̂h| (|f ◦ g| (r))
log[q+n−m] r

≤ ρ(p,q)h (f) ,

i.e., ρ
(p,q+n−m)
h (f ◦ g) = ρ

(p,q)
h (f) .(3.13)

Hence from (3.12) and (3.13) one can easily verify that ρ
(p−1,q+n−m)
h (f ◦ g) =

∞, ρ(p,q+n−m−1)h (f ◦ g) = 0 and ρ
(p+1,q+n−m+1)
h (f ◦ g) = 1 and there-

fore we get that the relative index-pair of f ◦ g is (p, q + n−m) when

q > m and either λ
(p,q)
h (f) > 0 or λ(m,n) (g) > 0 and thus the second

part of the theorem follows.
Case III. Let q < m. Then we obtain from (3.3) for all sufficiently
large positive numbers of r that

log[p+m−q] |̂h| (|f ◦ g| (r)) log[m] |g| (r) +O(1),

i.e., log[p+m−q] |̂h| (|f ◦ g| (r))
(
ρ(m,n) (g) + ε

)
log[n] r +O(1),

(3.14) i.e., lim
r→+∞

log[p+m−q] |̂h| (|f ◦ g| (r))
log[n] r

ρ(m,n) (g) .

Also from (3.1) we have for a sequence of positive numbers of r tending
to infinity that

log[p+m−q] |̂h| (|f ◦ g| (r)) ≥ log[m] |g| (r) +O(1),

i.e., log[p+m−q] |̂h| (|f ◦ g| (r)) ≥
(
ρ(m,n) (g)− ε

)
log[n] r +O(1),

(3.15) lim
r→+∞

log[p+m−q] |̂h| (|f ◦ g| (r))
log[n] r

≥ ρ(m,n) (g) .

Further, we get from (3.2) for a sequence of positive numbers of r tending
to infinity that

log[p+m−q] |̂h| (|f ◦ g| (r)) ≥ log[m] |g| (r) +O(1),

i.e., log[p+m−q] |̂h| (|f ◦ g| (r)) ≥
(
λ(m,n) (g)− ε

)
log[n] r +O(1),
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(3.16) lim
r→+∞

log[p+m−q] |̂h| (|f ◦ g| (r))
log[n] r

≥ λ(m,n) (g) .

Therefore from (3.14) and (3.15) , we obtain for λ
(p,q)
h (f) > 0 that

ρ(m,n) (g) ≤ lim
r→+∞

log[p+m−q] |̂h| (|f ◦ g| (r))
log[n] r

ρ(m,n) (g) ,

(3.17) i.e., ρ
(p+m−q,n)
h (f ◦ g) = ρ(m,n) (g) .

Similarly, from (3.14) and (3.16) we get for λ(m,n) (g) > 0 that

λ(m,n) (g) ≤ lim
r→+∞

log[p+m−q] |̂h| (|f ◦ g| (r))
log[n] r

ρ(m,n) (g) ,

(3.18) i.e., λ(m,n) (g) ≤ ρ(p+m−q,n)h (f ◦ g) ρ(m,n) (g) .

So from (3.17) and (3.18) one can easily verify that ρ
(p+m−q−1,n)
h (f ◦g) =

∞, ρ(p+m−q,n−1)h (f ◦ g) = 0 and ρ
(p+m−q+1,n+1)
h (f ◦ g) = 1 and therefore

we obtain that the relative index-pair of f ◦ g is (p + m − q, n) when

q < m and either λ
(p,q)
h (f) > 0 or λ(m,n) (g) > 0 and thus the third part

of the theorem is established.

In the line of Theorem 3.1 one can easily deduce the conclusion of
the following theorem and so its proof is omitted.

Theorem 3.2. Let f , g, h ∈ A (K). Also let the relative index pair
of f with respect to h and the index pair of g are (p, q) and (m,n)
respectively where p, q,m, n ∈ N. Then

(i) λ
(p,q)
h (f)λ(m,n)(g)

≤ λ
(p,n)
h (f ◦ g) min

{
ρ
(p,q)
h (f)λ(m,n)(g), λ

(p,q)
h (f)ρ(m,n)(g)

}
if q =

m, λ
(p,q)
h (f) > 0 and λ(m,n)(g) > 0;

(ii) λ
(p,q+n−m)
h (f◦g) = λ

(p,q)
h (f) if q > m, λ

(p,q)
h (f) > 0 and λ(m,n)(g) >

0;

(iii) λ
(p+m−q,n)
h (f◦g) = λ(m,n)(g) if q < m, λ

(p,q)
h (f) > 0 and λ(m,n)(g) >

0.

Corollary 3.3. Let f , g, h ∈ A (K). Also let the relative index
pair of f with respect to h and the index pair of g are (p− l,m− l)
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and (m,n) respectively where p, q,m, n ∈ N such that p − l > 0 and
m− l > 0.Then

ρ
(p,n)
h (f ◦ g) = ρ(m,n) (g) and λ

(p,n)
h (f ◦ g) = λ(m,n) (g) .

Proof. In view of Definition 1.7 ρ
(p,m)
h (f) = λ

(p,m)
h (f) = 1. Therefore

the conclusion of above corollary immediately follows from the first part
of Theorem 3.1 and Theorem 3.2.

Theorem 3.4. Let f , g ∈ A (K) have index-pairs (p, q) and (m,n)
respectively where p, q,m, n ∈ N. Then

(i) the index-pair of f ◦g is (p, n) when q = m and either λ(p,q)(f) > 0

or λ(m,n) (g) > 0. Also

(a) λ(p,q)(f)ρ(m,n)(g) ≤ ρ(p,n)(f ◦ g)ρ(p,q)(f)ρ(m,n)(g) if λ(p,q)(f) >
0 and

(b) ρ(p,q)(f)λ(m,n)(g) ≤ ρ(p,n)(f ◦g)ρ(p,q)(f)ρ(m,n)(g) if λ(m,n)(g) >
0;

(ii) the index-pair of f ◦ g is (p, q + n − m) when q > m and either

λ(p,q)(f) > 0 or λ(m,n)(g) > 0. Also

(a) λ(p,q)(f) ≤ ρ(p,q+n−m)(f ◦ g)ρ(p,q)(f) if λ(p,q)(f) > 0 and

(b) ρ(p,q+n−m)(f ◦ g) = ρ(p,q)(f) if λ(m,n)(g) > 0;
(iii) the index-pair of f ◦ g is (p + m − q, n) when q < m and either

λ(p,q)(f) > 0 or λ(m,n)(g) > 0. Also

(a) ρ(p+m−q,n)(f ◦ g) = ρ(m,n)(g) if λ(p,q)(f) > 0 and

(b) λ(m,n)(g) ≤ ρ(p+m−q,n)(f ◦ g)ρ(m,n)(g) if λ(m,n) (g) > 0.

Theorem 3.5. Let f , g ∈ A (K) have index-pairs (p, q) and (m,n)
respectively where p, q,m, n ∈ N. Then

(i) λ(p,q)(f)λ(m,n)(g)

≤ λ(p,n)(f ◦ g) min
{
ρ(p,q)(f)λ(m,n)(g), λ(p,q)(f)ρ(m,n)(g)

}
if q =

m, λ(p,q)(f) > 0 and λ(m,n)(g) > 0;

(ii) λ(p,q+n−m)(f◦g) = λ(p,q)(f) if q > m, λ(p,q)(f) > 0 and λ(m,n)(g) >
0;

(iii) λ(p+m−q,n)(f◦g) = λ(m,n)(g) if q < m, λ(p,q)(f) > 0 and λ(m,n) (g) >
0.

Reasoning similarly as in the proofs of the Theorem 3.1 and Theorem
3.2 one can easily deduce the conclusions of the above two theorems, and
so their proofs are omitted.

Remark 3.6. In the complex context, similar nature of results as
proved in Theorem 3.4 were established by Hong-Yan Xu et al. [24].
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Remark 3.7. Let f , g ∈ A (K) have index-pairs (p− l,m− l) and
(m,n) respectively where p, q,m, n, l ∈ N such that p − l > 0 and m −
l > 0.Then in view of Definition 1.3, Theorem 3.4 and Theorem 3.5
ρ(p,n) (f ◦ g) = ρ(m,n) (g) and λ(p,n) (f ◦ g) = λ(m,n) (g) .

Remark 3.8. In view of Definition 1.1, Theorem 3.4 and Theorem
3.5, it is evident that ρ (f ◦ g) and λ (f ◦ g) are both finite when ρ (f) <
∞ and ρ (g) = 0. Further if ρ (f) = 0 and f , g ∈ A (K) be transcendental,
then in view of Corollary 3.3 ρ (f ◦ g) = ρ (g) which improve Theorem 3
of [5].

Corollary 3.9. Let f , g, h ∈ A (K). Also let the relative index pair
of f with respect to h and the index pair of g are (p− 1,m− 1) and
(m,n) respectively where p, q,m, n ∈ N such that p > 1 and m > 1.Then

λ
(p−1,q−1)
h (f)σ(m,n) (g) ≤ σ(p,n)h (f ◦ g) ≤ ρ(p−1,q−1)h (f)σ(m,n) (g)

and

λ(p−1,q−1) (f)σ(m,n) (g) ≤ σ(p,n) (f ◦ g) ≤ ρ(p−1,q−1) (f)σ(m,n) (g)

Proof. In view of Lemma 2.1 and Corollary 3.3, we get that

σh
(p,n) (f ◦ g)

= lim
r→+∞

log[p−1] |̂h| (|f ◦ g| (r))(
log[n−1] r

)ρ(p,n)h (f◦g)

≤ lim
r→+∞

log[p−1] |̂h| (|f | (|g| (r)))
log[m−1] |g| (r)

· lim
r→+∞

log[m−1] |g| (r)(
log[n−1] r

)ρ(m,n)(g)
= ρ

(p−1,q−1)
h (f)σ(m,n) (g) .(3.19)

Similarly

σh
(p,n) (f ◦ g)

= lim
r→+∞

log[p−1] |̂h| (|f ◦ g| (r))(
log[n−1] r

)ρ(p,n)h (f◦g)

≥ lim
r→+∞

log[p−1] |̂h| (|f | (|g| (r)))
log[m−1] |g| (r)

· lim
r→+∞

log[m−1] |g| (r)(
log[n−1] r

)ρ(m,n)(g)
= λ

(p−1,q−1)
h (f)σ(m,n) (g) .(3.20)
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Hence the first part of corollary follows from (3.19) and (3.20) .
Again

σ
(p,n)
h (f ◦ g) = lim

r→+∞

log[p−1] |̂h| (|f ◦ g| (r))(
log[n−1] r

)ρ(p,n)h (f◦g)

≥ lim
r→+∞

log[p−1] |̂h| (|f | (|g| (r)))
log[m−1] |g| (r)

· lim
r→+∞

log[m−1] |g| (r)(
log[n−1] r

)ρ(m,n)(g)
= λ

(p−1,q−1)
h (f)σ(m,n) (g) .(3.21)

Also

σ
(p,n)
h (f ◦ g) = lim

r→+∞

log[p−1] |̂h| (|f ◦ g| (r))(
log[n−1] r

)ρ(p,n)h (f◦g)

≤ lim
r→+∞

log[p−1] |̂h| (|f | (|g| (r)))
log[m−1] |g| (r)

· lim
r→+∞

log[m−1] |g| (r)(
log[n−1] r

)ρ(m,n)(g)
= ρ

(p−1,q−1)
h (f)σ(m,n) (g) .(3.22)

Therefore the second part of corollary follows from (3.21) and (3.22) .
These complete the proofs.

Corollary 3.10. Let f , g, h ∈ A (K). Also let the relative index
pair of f with respect to h and the index pair of g are (p− 1,m− 1) and
(m,n) respectively where p, q,m, n ∈ N such that p > 1 and m > 1.Then

λ
(p−1,q−1)
h (f) τ (m,n) (g) ≤ τ (p,n)h (f ◦ g) ≤ ρ(p−1,q−1)h (f) τ (m,n) (g) ,

and

λ
(p−1,q−1)
h (f) τ (m,n) (g) ≤ τ (p,n)h (f ◦ g) ≤ ρ(p−1,q−1)h (f) τ (m,n) (g) .

Reasoning similarly as in the proof of the Corollary 3.9 one can easily
deduce the conclusion of Corollary 3.10, and so its proof is omitted.

Theorem 3.11. Let f , g, h, k ∈ A (K). Also let the index pairs
of f , g, h and k are (p, q), (m,n) , (a, b) and (c, d) respectively where
a, b, c, d, p, q,m, n ∈ N.

(i) If either (q = m, a = c = p, q ≥ n) or (q < m, c = p, a = p+m−q,
q ≥ n) holds and λ(p,q) (f) > 0, 0 < λ

(b,n)
h (f◦g) ≤ ρ(b,n)h (f◦g) <∞,
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0 < λ
(d,q)
k (f) ≤ ρ(d,q)k (f) <∞ then

λ
(b,n)
h (f ◦ g)

ρ
(d,q)
k (f)

≤ lim
r→+∞

log[b] |̂h| (|f ◦ g| (r))
log[d] |̂k|

(
|f |
(
exp[q−n] r

))
≤ min

{
λ
(b,n)
h (f ◦ g)

λ
(d,q)
k (f)

,
ρ
(b,n)
h (f ◦ g)

ρ
(d,q)
k (f)

}

≤ max

{
λ
(b,n)
h (f ◦ g)

λ
(d,q)
k (f)

,
ρ
(b,n)
h (f ◦ g)

ρ
(d,q)
k (f)

}

≤ lim
r→+∞

log[b] |̂h|(|f ◦ g|(r))
log[d] |̂k|

(
|f |(exp[q−n] r)

) ≤ ρ
(b,n)
h (f ◦ g)

λ
(d,q)
k (f)

.

(ii) If q > m, a = c = p, λ(p,q) (f) > 0, 0 < λ
(b,q+n−m)
h (f ◦ g ≤

ρ
(b,q+n−m)
h (f ◦ g) <∞ and 0 < λ

(d,q)
k (f) ≤ ρ(d,q)k (f) <∞ then

λ
(b,q+n−m)
h (f ◦ g)

ρ
(d,q)
k (f)

≤ lim
r→+∞

log[b] |̂h|(|f ◦ g|(r))
log[d] |̂k|

(
|f |
(
exp[m−n] r

))
≤ min

{
λ
(b,q+n−m)
h (f ◦ g)

λ
(d,q)
k (f)

,
ρ
(b,q+n−m)
h (f ◦ g)

ρ
(d,q)
k (f)

}

≤ max

{
λ
(b,q+n−m)
h (f ◦ g)

λ
(d,q)
k (f)

,
ρ
(b,q+n−m)
h (f ◦ g)

ρ
(d,q)
k (f)

}

≤ lim
r→+∞

log[b] |̂h| (|f ◦ g|(r))
log[d] |̂k|

(
|f |
(
exp[m−n] r

))
≤
ρ
(b,q+n−m)
h (f ◦ g)

λ
(d,q)
k (f)

.

Proof. Let either (q = m, a = c = p, q ≥ n) or (q < m, c =

p, a = p + m − q, q ≥ n) hold and λ(p,q) (f) > 0. Then in view of
Theorem 3.4, the index-pair of f◦g is (p, n) or (p+m− q, n) respectively

and therefore by Definition 1.6, ρ
(b,n)
h (f ◦ g) (respectively λ

(b,n)
h (f)) and

ρ
(d,q)
k (f) (respectively λ

(d,q)
k (f)) exist.

Now from the definition of ρ
(d,q)
k (f) and λ

(b,n)
h (f ◦ g) , we have for

arbitrary positive ε and for all sufficiently large positive numbers of r
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that

(3.23) log[b] |̂h| (|f ◦ g| (r))
(
λ
(b,n)
h (f ◦ g)− ε

)
log[n] r

and

(3.24) log[d] |̂k|
(
|f |
(

exp[q−n] r
))
≤
(
ρ
(d,q)
k (f) + ε

)
log[n] r.

Now from (3.23) and (3.24) , it follows for all sufficiently large positive
numbers of r that

log[b] |̂h| (|f ◦ g| (r))
log[d] |̂k|

(
|f |
(
exp[q−n] r

))
(
λ
(b,n)
h (f ◦ g)− ε

)
log[n] r(

ρ
(d,q)
k (f) + ε

)
log[n] r

.

As ε (> 0) is arbitrary, we obtain that

(3.25) lim
r→+∞

log[b] |̂h| (|f ◦ g| (r))
log[d] |̂k|

(
|f |
(
exp[q−n] r

)) λ(b,n)h (f ◦ g)

ρ
(d,q)
k (f)

.

Again we get for a sequence of positive numbers of r tending to infinity
that

(3.26) log[b] |̂h| (|f ◦ g| (r)) ≤
(
λ
(b,n)
h (f ◦ g) + ε

)
log[n] r

and for all sufficiently large positive numbers of r that

(3.27) log[d] |̂k|
(
|f |
(

exp[q−n] r
))(

λ
(d,q)
k (f)− ε

)
log[n] r.

Combining (3.26) and (3.27) , we get for a sequence of positive numbers
of r tending to infinity that

log[b] |̂h| (|f ◦ g| (r))
log[d] |̂k|

(
|f |
(
exp[q−n] r

)) ≤
(
λ
(b,n)
h (f ◦ g) + ε

)
log[n] r(

λ
(d,q)
k (f)− ε

)
log[n] r

.

Since ε (> 0) is arbitrary, it follows that

(3.28) lim
r→+∞

log[b] |̂h| (|f ◦ g| (r))
log[d] |̂k|

(
|f |
(
exp[q−n] r

)) ≤ λ
(b,n)
h (f ◦ g)

λ
(d,q)
k (f)

.

Also for a sequence of positive numbers of r tending to infinity that

(3.29) log[d] |̂k|
(
|f |
(

exp[q−n] r
))
≤
(
λ
(d,q)
k (f) + ε

)
log[n] r.
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Now from (3.23) and (3.29) , we obtain for a sequence of positive numbers
of r tending to infinity that

log[b] |̂h| (|f ◦ g| (r))
log[d] |̂k|

(
|f |
(
exp[q−n] r

)) ≥
(
λ
(b,n)
h (f ◦ g)− ε

)
log[n] r(

λ
(d,q)
k (f) + ε

)
log[n] r

.

As ε (> 0) is arbitrary, we get from above that

(3.30) lim
r→+∞

log[b] |̂h| (|f ◦ g| (r))
log[d] |̂k|

(
|f |
(
exp[q−n] r

)) ≥ λ
(b,n)
h (f ◦ g)

λ
(d,q)
k (f)

.

Also we obtain for all sufficiently large positive numbers of r that

(3.31) log[b] |̂h| (|f ◦ g| (r)) ≤
(
ρ
(b,n)
h (f ◦ g) + ε

)
log[n] r.

Now it follows from (3.27) and (3.31) for all sufficiently large positive
numbers of r that

log[b] |̂h| (|f ◦ g| (r))
log[d] |̂k|

(
|f |
(
exp[q−n] r

)) ≤
(
ρ
(b,n)
h (f ◦ g) + ε

)
log[n] r(

λ
(d,q)
k (f)− ε

)
log[n] r

.

Since ε (> 0) is arbitrary, we obtain that

(3.32) lim
r→+∞

log[b] |̂h| (|f ◦ g| (r))
log[d] |̂k|

(
|f |
(
exp[q−n] r

)) ≤ ρ
(b,n)
h (f ◦ g)

λ
(d,q)
k (f)

.

Further from the definition of ρ
(d,q)
k (f) , we get for a sequence of

positive numbers of r tending to infinity that

(3.33) log[d] |̂k|
(
|f |
(

exp[q−n] r
))(

ρ
(d,q)
k (f)− ε

)
log[n] r.

Now from (3.31) and (3.33) , it follows for a sequence of positive numbers
of r tending to infinity that

log[b] |̂h| (|f ◦ g| (r))
log[d] |̂k|

(
|f |
(
exp[q−n] r

)) ≤
(
ρ
(b,n)
h (f ◦ g) + ε

)
log[n] r(

ρ
(d,q)
k (f)− ε

)
log[n] r

.

As ε (> 0) is arbitrary, we obtain that

(3.34) lim
r→+∞

log[b] |̂h| (|f ◦ g| (r))
log[d] |̂k|

(
|f |
(
exp[q−n] r

)) ≤ ρ
(b,n)
h (f ◦ g)

ρ
(d,q)
k (f)

.
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Again we obtain for a sequence of positive numbers of r tending to
infinity that

(3.35) log[b] |̂h| (|f ◦ g| (r))
(
ρ
(b,n)
h (f ◦ g)− ε

)
log[n] r.

So combining (3.24) and (3.35) , we get for a sequence of positive num-
bers of r tending to infinity that

log[b] |̂h| (|f ◦ g| (r))
log[d] |̂k|

(
|f |
(
exp[q−n] r

))
(
ρ
(b,n)
h (f ◦ g)− ε

)
log[n] r(

ρ
(d,q)
k (f) + ε

)
log[n] r

.

Since ε (> 0) is arbitrary, it follows that

(3.36) lim
r→+∞

log[b] |̂h| (|f ◦ g| (r))
log[d] |̂k|

(
|f |
(
exp[q−n] r

)) ρ(b,n)h (f ◦ g)

ρ
(d,q)
k (f)

.

Thus the first part of the theorem follows from (3.25) , (3.28) , (3.30),
(3.32), (3.34) and (3.36) .

Analogously, the second part of the theorem can be derived in a like
manner.

The following theorem can be proved in the line of Theorem 3.11 and
so its proof is omitted.

Theorem 3.12. Let f , g, h, l ∈ A (K). Also let the index pairs
of f , g, h and l are (p, q), (m,n) , (a, b) and (x, y) respectively where
a, b, p, q,m, n, x, y ∈ N.

(i) If either (q = m = x, a = p) or (q < m = x, a = p+m− q) holds,

λ(m,n)(g) > 0, 0 < λ
(b,n)
h (f ◦ g) ≤ ρ(b,n)h (f ◦ g) <∞, 0 < λ

(y,n)
l (g) ≤

ρ
(y,n)
l (g) <∞ then

λ
(b,n)
h (f ◦ g)

ρ
(y,n)
l (g)

≤ lim
r→+∞

log[b] |̂h| (|f ◦ g|(r))
log[y] |̂l| (|g|(r))

≤ min

{
λ
(b,n)
h (f ◦ g)

λ
(y,n)
l (g)

,
ρ
(b,n)
h (f ◦ g)

ρ
(y,n)
l (g)

}

≤ max

{
λ
(b,n)
h (f ◦ g)

λ
(y,n)
l (g)

,
ρ
(b,n)
h (f ◦ g)

ρ
(y,n)
l (g)

}
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≤ lim
r→+∞

log[b] |̂h| (|f ◦ g|(r))
log[y] |̂l| (|g|(r))

≤
ρ
(b,n)
h (f ◦ g)

λ
(y,n)
l (g)

.

(ii) If q > m = x, a = p, λ(m,n) (g) > 0, 0 < λ
(b,q+n−m)
h (f ◦ g) ≤

ρ
(b,q+n−m)
h (f ◦ g) <∞, 0 < λ

(y,n)
l (g) ≤ ρ(y,n)l (g) <∞ then

λ
(b,q+n−m)
h (f ◦ g)

ρ
(y,n)
l (g)

≤ lim
r→+∞

log[b] |̂h|
(
|f ◦ g|

(
exp[q−m] r

))
log[y] |̂l| (|g|(r))

≤ min

{
λ
(b,q+n−m)
h (f ◦ g)

λ
(y,n)
l (g)

,
ρ
(b,q+n−m)
h (f ◦ g)

ρ
(y,n)
l (g)

}

≤ max

{
λ
(b,q+n−m)
h (f ◦ g)

λ
(y,n)
l (g)

,
ρ
(b,q+n−m)
h (f ◦ g)

ρ
(y,n)
l (g)

}

≤ lim
r→+∞

log[b] |̂h|
(
|f ◦ g|

(
exp[q−m] r

))
log[y] |̂l| (|g|(r))

≤
ρ
(b,q+n−m)
h (f ◦ g)

λ
(y,n)
l (g)

.

The proofs of the following four theorems can be carried out as of the
Theorem 3.11, therefore we omit the details.

Theorem 3.13. Let f , g, h, k ∈ A (K). Also let the index pairs
of f , g, h and k are (p, q), (m,n) , (a, b) and (c, d) respectively where
a, b, c, d, p, q,m, n ∈ N.

(i) If either (q = m, a = c = p, q ≥ n) or (q < m, c = p, a = p +

m − q, q ≥ n) holds, 0 < σ
(b,n)
h (f ◦ g) ≤ σ

(b,n)
h (f ◦ g) < ∞, 0 <

σ
(d,q)
k (f) ≤ σ(d,q)k (f) <∞ and ρ

(b,n)
h (f ◦ g) = ρ

(d,q)
k (f), then

σ
(b,n)
h (f ◦ g)

σ
(d,q)
k (f)

≤ lim
r→+∞

log[b−1] |̂h| (|f ◦ g|(r))
log[d−1] |̂k|

(
|f |
(
exp[q−n] r

))
≤ min

{
σ
(b,n)
h (f ◦ g)

σ
(d,q)
k (f)

,
σ
(b,n)
h (f ◦ g)

σ
(d,q)
k (f)

}
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≤ max

{
σ
(b,n)
h (f ◦ g)

σ
(d,q)
k (f)

,
σ
(b,n)
h (f ◦ g)

σ
(d,q)
k (f)

}

≤ lim
r→+∞

log[b−1] |̂h| (|f ◦ g|(r))
log[d−1] |̂k|

(
|f |
(
exp[q−n] r

))
≤
σ
(b,n)
h (f ◦ g)

σ
(d,q)
k (f)

.

(ii) If q > m, a = c = p, 0 < σ
(b,q+n−m)
h (f ◦g) ≤ σ(b,q+n−m)

h (f ◦g) <∞,
0 < σ

(d,q)
k (f) ≤ σ

(d,q)
k (f) < ∞ and ρ

(b,q+n−m)
h (f ◦ g) = ρ

(d,q)
k (f) ,

then

σ
(b,q+n−m)
h (f ◦ g)

σ
(d,q)
k (f)

≤ lim
r→+∞

log[b−1] |̂h| (|f ◦ g| (r))
log[d−1] |̂k|

(
|f |
(
exp[m−n] r

))
≤ min

{
σ
(b,q+n−m)
h (f ◦ g)

σ
(d,q)
k (f)

,
σ
(b,q+n−m)
h (f ◦ g)

σ
(d,q)
k (f)

}

≤ max

{
σ
(b,q+n−m)
h (f ◦ g)

σ
(d,q)
k (f)

,
σ
(b,q+n−m)
h (f ◦ g)

σ
(d,q)
k (f)

}

≤ lim
r→+∞

log[b−1] |̂h| (|f ◦ g| (r))
log[d−1] |̂k|

(
|f |
(
exp[m−n] r

))
≤
σ
(b,q+n−m)
h (f ◦ g)

σ
(d,q)
k (f)

.

Theorem 3.14. Let f , g, h, k ∈ A (K). Also let the index pairs
of f , g, h and k are (p, q), (m,n) , (a, b) and (c, d) respectively where
a, b, c, d, p, q,m, n ∈ N.

(i) If either (q = m, a = c = p, q ≥ n) or (q < m, c = p, a = p +

m − q, q ≥ n) holds, 0 < τ
(b,n)
h (f ◦ g) ≤ τ

(b,n)
h (f ◦ g) < ∞, 0 <

τ
(d,q)
k (f) ≤ τ (d,q)k (f) <∞ and λ

(b,n)
h (f ◦ g) = λ

(d,q)
k (f) , then

τ
(b,n)
h (f ◦ g)

τ
(d,q)
k (f)

≤ lim
r→+∞

log[b−1] |̂h| (|f ◦ g| (r))
log[d−1] |̂k|

(
|f |
(
exp[q−n] r

))
≤ min

{
τ
(b,n)
h (f ◦ g)

τ
(d,q)
k (f)

,
τ
(b,n)
h (f ◦ g)

τ
(d,q)
k (f)

}

≤ max

{
τ
(b,n)
h (f ◦ g)

τ
(d,q)
k (f)

,
τ
(b,n)
h (f ◦ g)

τ
(d,q)
k (f)

}
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≤ lim
r→+∞

log[b−1] |̂h| (|f ◦ g|(r))
log[d−1] |̂k|

(
|f |
(
exp[q−n] r

))
≤
τ
(b,n)
h (f ◦ g)

τ
(d,q)
k (f)

.

(ii) If q > m, a = c = p, 0 < τ
(b,q+n−m)
h (f ◦ g) ≤ τ

(b,q+n−m)
h (f ◦ g) <

∞, 0 < τ
(d,q)
k (f)≤ τ (d,q)k (f)<∞ and λ

(b,q+n−m)
h (f ◦ g) = λ

(d,q)
k (f) ,

then

τ
(b,q+n−m)
h (f ◦ g)

τ
(d,q)
k (f)

≤ lim
r→+∞

log[b−1] |̂h| (|f ◦ g| (r))
log[d−1] |̂k|

(
|f |
(
exp[m−n] r

))
≤ min

{
τ
(b,q+n−m)
h (f ◦ g)

τ
(d,q)
k (f)

,
τ
(b,q+n−m)
h (f ◦ g)

τ
(d,q)
k (f)

}

≤ max

{
τ
(b,q+n−m)
h (f ◦ g)

τ
(d,q)
k (f)

,
τ
(b,q+n−m)
h (f ◦ g)

τ
(d,q)
k (f)

}

≤ lim
r→+∞

log[b−1] |̂h| (|f ◦ g| (r))
log[d−1] |̂k|

(
|f |
(
exp[m−n] r

))
≤
τ
(b,q+n−m)
h (f ◦ g)

τ
(d,q)
k (f)

.

Theorem 3.15. Let f , g, h, k ∈ A (K). Also let the index pairs
of f , g, h and k are (p, q), (m,n) , (a, b) and (c, d) respectively where
a, b, c, d, p, q,m, n ∈ N.

(i) If either (q = m, a = c = p, q ≥ n) or (q < m, c = p, a = p + m −
q, q ≥ n) holds, 0 < σ

(b,n)
h (f ◦ g) ≤ σ(b,n)h (f ◦ g) <∞,0¡τ

(d,q)
k (f) ≤

τ
(d,q)
k (f) <∞ and ρ

(b,n)
h (f ◦ g) = λ

(d,q)
k (f) , then

σ
(b,n)
h (f ◦ g)

τ
(d,q)
k (f)

≤ lim
r→+∞

log[b−1] |̂h| (|f ◦ g| (r))
log[d−1] |̂k|

(
|f |
(
exp[q−n] r

))
≤ min

{
σ
(b,n)
h (f ◦ g)

τ
(d,q)
k (f)

,
σ
(b,n)
h (f ◦ g)

τ
(d,q)
k (f)

}

≤ max

{
σ
(b,n)
h (f ◦ g)

τ
(d,q)
k (f)

,
σ
(b,n)
h (f ◦ g)

τ
(d,q)
k (f)

}
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≤ lim
r→+∞

log[b−1] |̂h| (|f ◦ g| (r))
log[d−1] |̂k|

(
|f |
(
exp[q−n] r

))
≤
σ
(b,n)
h (f ◦ g)

τ
(d,q)
k (f)

.

(ii) If q > m, a = c = p, 0 < σ
(b,q+n−m)
h (f ◦ g) ≤ σ

(b,q+n−m)
h (f ◦ g) <

∞, 0 < τ
(d,q)
k (f) ≤ τ (d,q)k (f) <∞ and ρ

(b,q+n−m)
h (f ◦ g) = λ

(d,q)
k (f) ,

then

σ
(b,q+n−m)
h (f ◦ g)

τ
(d,q)
k (f)

≤ lim
r→+∞

log[b−1] |̂h| (|f ◦ g| (r))
log[d−1] |̂k|

(
|f |
(
exp[m−n] r

))
≤ min

{
σ
(b,q+n−m)
h (f ◦ g)

τ
(d,q)
k (f)

,
σ
(b,q+n−m)
h (f ◦ g)

τ
(d,q)
k (f)

}

≤ max

{
σ
(b,q+n−m)
h (f ◦ g)

τ
(d,q)
k (f)

,
σ
(b,q+n−m)
h (f ◦ g)

τ
(d,q)
k (f)

}

≤ lim
r→+∞

log[b−1] |̂h| (|f ◦ g| (r))
log[d−1] |̂k|

(
|f |
(
exp[m−n] r

))
≤
σ
(b,q+n−m)
h (f ◦ g)

τ
(d,q)
k (f)

.

Theorem 3.16. Let f , g, h, k ∈ A (K). Also let the index pairs
of f , g, h and k are (p, q), (m,n) , (a, b) and (c, d) respectively where
a, b, c, d, p, q,m, n ∈ N.

(i) If either (q = m, a = c = p, q ≥ n) or (q < m, c = p, a = p +

m − q, q ≥ n) holds, 0 < τ
(b,n)
h (f ◦ g) ≤ τ

(b,n)
h (f ◦ g) < ∞, 0 <

σ
(d,q)
k (f) ≤ σ(d,q)k (f) <∞ and λ

(b,n)
h (f ◦ g) = ρ

(d,q)
k (f) , then

τ
(b,n)
h (f ◦ g)

σ
(d,q)
k (f)

≤ lim
r→+∞

log[b−1] |̂h| (|f ◦ g| (r))
log[d−1] |̂k|

(
|f |
(
exp[q−n] r

))
≤ min

{
τ
(b,n)
h (f ◦ g)

σ
(d,q)
k (f)

,
τ
(b,n)
h (f ◦ g)

σ
(d,q)
k (f)

}

≤ max

{
τ
(b,n)
h (f ◦ g)

σ
(d,q)
k (f)

,
τ
(b,n)
h (f ◦ g)

σ
(d,q)
k (f)

}
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≤ lim
r→+∞

log[b−1] |̂h| (|f ◦ g| (r))
log[d−1] |̂k|

(
|f |
(
exp[q−n] r

))
≤
τ
(b,n)
h (f ◦ g)

σ
(d,q)
k (f)

.

(ii) If q > m, a = c = p, 0 < τ
(b,q+n−m)
h (f ◦ g) ≤ τ

(b,q+n−m)
h (f ◦ g) <

∞, 0 < σ
(d,q)
k (f) ≤ σ(d,q)k (f) <∞ and λ

(b,q+n−m)
h (f ◦ g) = ρ

(d,q)
k (f) ,

then

τ
(b,q+n−m)
h (f ◦ g)

σ
(d,q)
k (f)

≤ lim
r→+∞

log[b−1] |̂h| (|f ◦ g| (r))
log[d−1] |̂k|

(
|f |
(
exp[m−n] r

))
≤ min

{
τ
(b,q+n−m)
h (f ◦ g)

σ
(d,q)
k (f)

,
τ
(b,q+n−m)
h (f ◦ g)

σ
(d,q)
k (f)

}

≤ max

{
τ
(b,q+n−m)
h (f ◦ g)

σ
(d,q)
k (f)

,
τ
(b,q+n−m)
h (f ◦ g)

σ
(d,q)
k (f)

}

≤ lim
r→+∞

log[b−1] |̂h| (|f ◦ g| (r))
log[d−1] |̂k|

(
|f |
(
exp[m−n] r

))
≤
τ
(b,q+n−m)
h (f ◦ g)

σ
(d,q)
k (f)

.

Analogously one may formulate the following four theorems without
their proofs.

Theorem 3.17. Let f , g, h, l ∈ A (K) . Also let the index pairs
of f , g, h and l are (p, q) , (m,n) , (a, b) and (x, y) respectively where
a, b, p, q,m, n, x, y ∈ N.

(i) If either (q = m = x, a = p) or (q < m = x, a = p+m− q) holds,

0 < σ
(b,n)
h (f ◦ g) ≤ σ

(b,n)
h (f ◦ g) <∞, 0 < σ

(y,n)
l (g) ≤ σ(y,n)l (g) <

∞ and ρ
(b,n)
h (f ◦ g) = ρ

(y,n)
l (g) then

σ
(b,n)
h (f ◦ g)

σ
(y,n)
l (g)

≤
σ
(b,n)
h (f ◦ g)

σ
(y,n)
l (g)

≤ lim
r→+∞

log[b−1] |̂h| (|f ◦ g| (r))
log[y−1] |̂l| (|g| (r))

≤ min

{
σ
(b,n)
h (f ◦ g)

σ
(y,n)
l (g)

,
σ
(b,n)
h (f ◦ g)

σ
(y,n)
l (g)

}
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≤ max

{
σ
(b,n)
h (f ◦ g)

σ
(y,n)
l (g)

,
σ
(b,n)
h (f ◦ g)

σ
(y,n)
l (g)

}

≤ lim
r→+∞

log[b−1] |̂h| (|f ◦ g| (r))
log[y−1] |̂l| (|g| (r))

≤
σ
(b,n)
h (f ◦ g)

σ
(y,n)
l (g)

.

(ii) If q > m = x, a = p, 0 < σ
(b,q+n−m)
h (f ◦ g) ≤ σ

(b,q+n−m)
h (f ◦ g) <

∞, 0 < σ
(y,n)
l (g) ≤ σ(y,n)l (g) <∞ and ρ

(b,q+n−m)
h (f ◦ g) = ρ

(y,n)
l (g)

then

σ
(b,q+n−m)
h (f ◦ g)

σ
(y,n)
l (g)

≤ lim
r→+∞

log[b−1] |̂h|
(
|f ◦ g|

(
exp[q−m] r

))
log[y−1] |̂l| (|g| (r))

≤ min

{
σ
(b,q+n−m)
h (f ◦ g)

σ
(y,n)
l (g)

,
σ
(b,q+n−m)
h (f ◦ g)

σ
(y,n)
l (g)

}

≤ max

{
σ
(b,q+n−m)
h (f ◦ g)

σ
(y,n)
l (g)

,
σ
(b,q+n−m)
h (f ◦ g)

σ
(y,n)
l (g)

}

≤ lim
r→+∞

log[b−1] |̂h|
(
|f ◦ g|

(
exp[q−m] r

))
log[y−1] |̂l| (|g| (r))

≤
σ
(b,q+n−m)
h (f ◦ g)

σ
(y,n)
l (g)

.

Theorem 3.18. Let f , g, h, l ∈ A (K). Also let the index pairs
of f , g, h and l are (p, q), (m,n) , (a, b) and (x, y) respectively where
a, b, p, q,m, n, x, y ∈ N.

(i) If either (q = m = x, a = p) or (q < m = x, a = p+m− q) holds,

0 < τ
(b,n)
h (f ◦ g) ≤ τ

(b,n)
h (f ◦ g) < ∞, 0 < τ

(y,n)
l (g) ≤ τ

(y,n)
l (g) <

∞ and λ
(b,n)
h (f ◦ g) = λ

(y,n)
l (g) then

τ
(b,n)
h (f ◦ g)

τ
(y,n)
l (g)

≤ lim
r→+∞

log[b−1] |̂h| (|f ◦ g| (r))
log[y−1] |̂l| (|g| (r))

≤ min

{
τ
(b,n)
h (f ◦ g)

τ
(y,n)
l (g)

,
τ
(b,n)
h (f ◦ g)

τ
(y,n)
l (g)

}
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≤ max

{
τ
(b,n)
h (f ◦ g)

τ
(y,n)
l (g)

,
τ
(b,n)
h (f ◦ g)

τ
(y,n)
l (g)

}

≤ lim
r→+∞

log[b−1] |̂h| (|f ◦ g| (r))
log[y−1] |̂l| (|g| (r))

≤
τ
(b,n)
h (f ◦ g)

τ
(y,n)
l (g)

.

(ii) If q > m = x, a = p, 0 < τ
(b,q+n−m)
h (f ◦ g) ≤ τ

(b,q+n−m)
h (f ◦ g) <

∞, 0 < τ
(y,n)
l (g) ≤ τ (y,n)l (g) <∞ and λ

(b,q+n−m)
h (f ◦ g) = λ

(y,n)
l (g)

then

τ
(b,q+n−m)
h (f ◦ g)

τ
(y,n)
l (g)

≤ lim
r→+∞

log[b−1] |̂h|
(
|f ◦ g|

(
exp[q−m] r

))
log[y−1] |̂l| (|g| (r))

≤ min

{
τ
(b,q+n−m)
h (f ◦ g)

τ
(y,n)
l (g)

,
τ
(b,q+n−m)
h (f ◦ g)

τ
(y,n)
l (g)

}

≤ max

{
τ
(b,q+n−m)
h (f ◦ g)

τ
(y,n)
l (g)

,
τ
(b,q+n−m)
h (f ◦ g)

τ
(y,n)
l (g)

}

≤ lim
r→+∞

log[b−1] |̂h|
(
|f ◦ g|

(
exp[q−m] r

))
log[y−1] |̂l| (|g| (r))

≤
τ
(b,q+n−m)
h (f ◦ g)

τ
(y,n)
l (g)

.

Theorem 3.19. Let f , g, h, l ∈ A (K). Also let the index pairs
of f , g, h and l are (p, q), (m,n) , (a, b) and (x, y) respectively where
a, b, p, q,m, n, x, y ∈ N.

(i) If either (q = m = x, a = p) or (q < m = x, a = p+m− q) holds,

0 < σ
(b,n)
h (f ◦ g) ≤ σ

(b,n)
h (f ◦ g) < ∞, 0 < τ

(y,n)
l (g) ≤ τ

(y,n)
l (g) <

∞ and ρ
(b,n)
h (f ◦ g) = λ

(y,n)
l (g) then

σ
(b,n)
h (f ◦ g)

τ
(y,n)
l (g)

≤ lim
r→+∞

log[b−1] |̂h| (|f ◦ g| (r))
log[y−1] |̂l| (|g| (r))

≤ min

{
σ
(b,n)
h (f ◦ g)

τ
(y,n)
l (g)

,
σ
(b,n)
h (f ◦ g)

τ
(y,n)
l (g)

}

≤ max

{
σ
(b,n)
h (f ◦ g)

τ
(y,n)
l (g)

,
σ
(b,n)
h (f ◦ g)

τ
(y,n)
l (g)

}



Some growth aspects of composite p-adic entire functions 455

≤ lim
r→+∞

log[b−1] |̂h| (|f ◦ g| (r))
log[y−1] |̂l| (|g| (r))

≤
σ
(b,n)
h (f ◦ g)

τ
(y,n)
l (g)

.

(ii) If q > m = x, a = p, 0 < σ
(b,q+n−m)
h (f ◦ g) ≤ σ

(b,q+n−m)
h (f ◦ g) <

∞, 0 < τ
(y,n)
l (g) ≤ τ (y,n)l (g) <∞ and ρ

(b,q+n−m)
h (f ◦ g) = λ

(y,n)
l (g)

then

σ
(b,q+n−m)
h (f ◦ g)

τ
(y,n)
l (g)

≤ lim
r→+∞

log[b−1] |̂h|
(
|f ◦ g|

(
exp[q−m] r

))
log[y−1] |̂l| (|g| (r))

≤ min

{
σ
(b,q+n−m)
h (f ◦ g)

τ
(y,n)
l (g)

,
σ
(b,q+n−m)
h (f ◦ g)

τ
(y,n)
l (g)

}

≤ max

{
σ
(b,q+n−m)
h (f ◦ g)

τ
(y,n)
l (g)

,
σ
(b,q+n−m)
h (f ◦ g)

τ
(y,n)
l (g)

}

≤ lim
r→+∞

log[b−1] |̂h|
(
|f ◦ g|

(
exp[q−m] r

))
log[y−1] |̂l| (|g| (r))

≤
σ
(b,q+n−m)
h (f ◦ g)

τ
(y,n)
l (g)

.

Theorem 3.20. Let f, g, h, l ∈ A (K) . Also let the index pairs of f,
g, h and l are (p, q) , (m,n) , (a, b) and (x, y) respectively where a, b, p, q,
m, n, x, y ∈ N.

(i) If either (q = m = x, a = p) or (q < m = x, a = p+m− q) holds,

0 < τ
(b,n)
h (f ◦ g) ≤ τ

(b,n)
h (f ◦ g) < ∞, 0 < σ

(y,n)
l (g) ≤ σ

(y,n)
l (g) <

∞ and λ
(b,n)
h (f ◦ g) = ρ

(y,n)
l (g) then

τ
(b,n)
h (f ◦ g)

σ
(y,n)
l (g)

≤ lim
r→+∞

log[b−1] |̂h| (|f ◦ g| (r))
log[y−1] |̂l| (|g| (r))

≤ min

{
τ
(b,n)
h (f ◦ g)

σ
(y,n)
l (g)

,
τ
(b,n)
h (f ◦ g)

σ
(y,n)
l (g)

}

≤ max

{
τ
(b,n)
h (f ◦ g)

σ
(y,n)
l (g)

,
τ
(b,n)
h (f ◦ g)

σ
(y,n)
l (g)

}
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≤ lim
r→+∞

log[b−1] |̂h| (|f ◦ g| (r))
log[y−1] |̂l| (|g| (r))

≤
τ
(b,n)
h (f ◦ g)

σ
(y,n)
l (g)

.

(ii) If q > m = x, a = p, 0 < τ
(b,q+n−m)
h (f ◦ g) ≤ τ

(b,q+n−m)
h (f ◦ g) <

∞,0¡ σ
(y,n)
l (g) ≤ σ

(y,n)
l (g) <∞ and λ

(b,q+n−m)
h (f ◦ g) = ρ

(y,n)
l (g)

then

τ
(b,q+n−m)
h (f ◦ g)

σ
(y,n)
l (g)

≤ lim
r→+∞

log[b−1] |̂h|
(
|f ◦ g|

(
exp[q−m] r

))
log[y−1] |̂l| (|g| (r))

≤ min

{
τ
(b,q+n−m)
h (f ◦ g)

σ
(y,n)
l (g)

,
τ
(b,q+n−m)
h (f ◦ g)

σ
(y,n)
l (g)

}

≤ max

{
τ
(b,q+n−m)
h (f ◦ g)

σ
(y,n)
l (g)

,
τ
(b,q+n−m)
h (f ◦ g)

σ
(y,n)
l (g)

}

≤ lim
r→+∞

log[b−1] |̂h|
(
|f ◦ g|

(
exp[q−m] r

))
log[y−1] |̂l| (|g| (r))

≤
τ
(b,q+n−m)
h (f ◦ g)

σ
(y,n)
l (g)

.

Next we prove our theorems regarding (p, q)-th relative order and
(p, q)-th relative type of f and its derivative f ′ with respect to g and its
derivative g′:

Theorem 3.21. Let f , g ∈ A (K). Then for any positive integers p
and q

ρ(p,q)g (f) = ρ(p,q)g

(
f ′
)

= ρ
(p,q)
g′ (f) = ρ

(p,q)
g′

(
f ′
)

and
λ(p,q)g (f) = λ(p,q)g

(
f ′
)

= λ
(p,q)
g′ (f) = λ

(p,q)
g′

(
f ′
)
.

Proof. Let f (x) =
+∞∑
n=0

anx
n ∈ A (K) and g (x) =

+∞∑
n=0

bnx
n ∈ A (K).

Since |n| ≤ 1, so (|n|)n ≤ |n|. Therefore we have

|f ′| (r) = sup
n≥1

{
|nan|rn−1

}
=

1

r
sup
n≥1
{|nan|rn} ≥

1

r
sup
n≥0
{|an| (|n|r)n} ,

(3.37) i.e., |f | (|n|r) ≤ r|f ′| (r) .
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Also for all r > 0 we know that

(3.38) |f ′| (r) ≤ |f | (r)
r

{cf. [7, 18]} .

Therefore from (3.37) and (3.38) ,we obtain for r > 0 that

(3.39)
f | (|n|r)

r
≤ |f ′| (r) ≤ |f | (r)

r
.

Now let α ∈ (0, 1) . Therefore replacing r by rα and b = 1
α in Lemma

2.2, we get that

|f |
(
rbα
)
≥ raα|f | (rα) ≥ r|f | (rα) ,

where a is a positive integer such that aα ≥ 1. Now for all sufficiently
large values of r we obtain that

|f | (r) ≥ r|f | (rα) .

Therefore from (3.39) and above, we obtain for all large r > 1 that

(3.40) |f | ((|n|r)α) ≤ f | (|n|r)
r

≤ |f ′| (r) ≤ |f | (r)
r

< |f | (r) .

Therefore,

lim
r→+∞

log[p] |̂g| (|f | ((|n|r)α))

log[q] r
≤ lim

r→+∞

log[p] |̂g| (|f ′| (r))
log[q] r

≤ lim
r→+∞

log[p] |̂g| (|f | (r))
log[q] r

,

i.e., lim
r→+∞

log[p] |̂g| (|f | ((|n|r)α))

log[q] (|n|r)α
· log[q] (|n|r)α

log[q] r
(3.41)

≤ ρ(p,q)g

(
f ′
)
≤ ρ(p,q)g (f) .

Therefore when q > 1, we obtain from (3.41) that

(3.42) ρ(p,q)g (f) ≤ ρ(p,q)g

(
f ′
)
≤ ρ(p,q)g (f) .

Further we q = 1, we get from from (3.41) that

σρ(p,q)g (f) ≤ ρ(p,q)g

(
f ′
)
≤ ρ(p,q)g (f) .

Now letting σ → 1− 0,we get from above that

(3.43) ρ(p,q)g (f) ≤ ρ(p,q)g

(
f ′
)
≤ ρ(p,q)g (f) .

So from (3.42) and (3.43), it follow that

(3.44) ρ(p,q)g

(
f ′
)

= ρ(p,q)g (f) .

Similarly if we replace g by g′ , we obtain that

(3.45) ρ
(p,q)
g′

(
f ′
)

= ρ
(p,q)
g′ (f) .
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Further we obtain from (3.40) for all large r > 1 that

|g| ((|n|r)α) ≤ |g′| (r) < |g| (r) .

Therefore from above we get that

log[q] |̂f | (|g| ((|n|r)α))

log[p] (|n|r)α
· log[p] (|n|r)α

log[p] r
≤ log[q] |̂f | (|g′| (r))

log[p] r
<

log[q] |̂f | (|g| (r))
log[p] r

.

As lim
r→+∞

log[p](|n|r)α

log[p] r
≥ α, so we get from above that

α lim
r→+∞

log[q] |̂f | (|g| ((|n|r)α))

log[p] (|n|r)α
≤ lim

r→+∞

log[q] |̂f | (|g′| (r))
log[p] r

≤ lim
r→+∞

log[q] |̂f | (|g| (r))
log[p] r

,

i.e.,
α

lim
r→+∞

log[p] |̂g|(r)
log[q] |̂f |(r)

≤ 1

lim
r→+∞

log[p] |̂g′|(r)
log[q] |̂f |(r)

≤ 1

lim
r→+∞

log[p] |̂g|(r)
log[q] |̂f |(r)

.

So in view of Definition 1.6, it follows from above that

α

ρ
(p,q)
g (f)

≤ 1

ρ
(p,q)
g′ (f)

≤ 1

ρ
(p,q)
g (f)

.

So letting σ → 1− 0,we have from above that

(3.46) ρ(p,q)g (f) = ρ
(p,q)
g′ (f) .

Thus the first part of the theorem follows from (3.44) , (3.45) and (3.46) .
In a similar manner one can easily establish the second part of the

theorem. Hence the theorem follows.

The proof of the following theorem can be carried out as of and with
the help of the Theorem 3.21, therefore we omit the details.

Remark 3.22. In the complex context, similar nature of results as
proved in the first part of Theorem 3.21 were established by Lahiri et al
[21].

Theorem 3.23. Let f , g ∈ A (K). Then for any positive integers p
and q, both greater than 1

(1) σ
(p,q)
g (f) = σ

(p,q)
g (f ′) = σ

(p,q)
g′ (f) = σ

(p,q)
g′ (f ′)

(2) σ
(p,q)
g (f) = σ

(p,q)
g (f ′) = σ

(p,q)
g′ (f) = vσ

(p,q)
g′ (f ′)

(3) τ
(p,q)
g (f) = τ

(p,q)
g (f ′) = τ

(p,q)
g′ (f) = τ

(p,q)
g′ (f ′) and

(4) τ
(p,q)
g (f) = τ

(p,q)
g (f ′) = τ

(p,q)
g′ (f) = τ

(p,q)
g′ (f ′) .
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